An Overview of the DDMA team

Kevin R. Vixie

The Data Driven Modeling and Analysis (DDMA) Team &
Mathematical Modeling and Analysis (T-7)
Los Alamos National Laboratory

September 28, 2006

The team started in 2002

- Essential Component Analysis Proposal: eventually 2 of 3 proposals were funded.
- 2002 Image Analysis Workshop at LANL: high visibility, good attendance
- Initial members: Vixie (lead), Asaki, Wohlberg

Since that time we have grown

- 25 members: roughly half at LANL, half at universities
- Many parallel projects, huge range of expertise
- 2.5M\$/year
- Innovative team structure and activities

DDMA – Data-Driven Modeling and Analysis

Data analysis requires a synthesis of expertise from many fields.

Lead Team

Tom Asaki (CCS-2) asaki@lanl.gov

Katharine Chartrand (HPC-4) kncx@lanl.gov

Rick Chartrand (T-7) rickc@lanl.gov

Matt Sottile (CCS-1) matt@lanl.gov

Kevin Vixie (T-7) vixie@lanl.gov

Team Members

Bill Allard (Duke)

Erik Bollt (Clarkson) Patrick Campbell (T-7)

David Caraballo (Georgetown)

John Dennis, Jr. (Rice)

David Dreisigmever (HPC-4)

Selim Esedoglu (Michigan)

Gilad Lerman (Minnesota)

Fred Park (Michigan)

Collin Powell (CCS-2)

Brvan Rasmussen (HPC-4)

Paul Rodriguez (T-7)

Pete Schultz (Clarkson)

Valentina Staneva (T-7)

Curt Vogel (Montana State)

Brendt Wohlberg (T-7)

Wotao Yin (Rice)

Mark Abramson (AFIT)

David Arathorn (General Intelligence Corp.)

Chris Orum (D-1)

Robert Sarracino (Scientific Modeling Group, Los Alamos)

Expertise

Algorithmics

Computational Science

Analysis

Geometric Measure Theory

Partial Differential Equations

Variational Analysis Harmonic Analysis

Differential Geometry

Dynamical Systems

Dimension Reduction

Inverse Problems Numerical Analysis

Optimization

Signal Processing

Statistics

Tomography

Current Applications

Algorithm and Prototype Software Development

Comparison Metrics Dimension Reduction

Extrapolation and Inpainting

Feature Measures

Mixed-Variable Optimization Object Recognition

Special X-ray Tomography Warping Transformations

Geometric Image Processing

Geometric Analysis

- Image Warping
- Applied Differential Geometry
- Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Geometric Analysis
- Image Warping
- Applied Differential Geometry
- ► Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Geometric Analysis
- Image Warping
- Applied Differential Geometry
- ► Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Geometric Analysis
- Image Warping
- Applied Differential Geometry
- ► Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Geometric Analysis
- Image Warping
- Applied Differential Geometry
- ► Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Geometric Analysis
- Image Warping
- Applied Differential Geometry
- ► Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Geometric Analysis
- Image Warping
- Applied Differential Geometry
- Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Geometric Analysis
- Image Warping
- Applied Differential Geometry
- Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Geometric Analysis
- Image Warping
- Applied Differential Geometry
- ► Radiographic Inversions
- Object Detection/recognition/segmentation
- Metrics and Regularizations
- Compressed Sensing
- Optimization
- Other areas

- Numerous Special Sessions: SIAM Imaging, SIAM Dynamical Systems, AMS meetings and AAAS Annual Meeting
- ▶ 2002 LANL Image Analysis Workshop
- ▶ 2005 Graduate Summer School at IPAM-UCLA
- RIPS Summer program at IPAM: last 3 years
- Numerous Short Courses and Invited Talks
- ▶ DDMA Speaker Series: Over 40 speakers in the first 1.5 years.
- ▶ (... and half the team is at universities!)

- Numerous Special Sessions: SIAM Imaging, SIAM Dynamical Systems, AMS meetings and AAAS Annual Meeting
- ▶ 2002 LANL Image Analysis Workshop
- ▶ 2005 Graduate Summer School at IPAM-UCLA
- RIPS Summer program at IPAM: last 3 years
- Numerous Short Courses and Invited Talks
- ▶ DDMA Speaker Series: Over 40 speakers in the first 1.5 years.
- ▶ (... and half the team is at universities!)

- Numerous Special Sessions: SIAM Imaging, SIAM Dynamical Systems, AMS meetings and AAAS Annual Meeting
- 2002 LANL Image Analysis Workshop
- ▶ 2005 Graduate Summer School at IPAM-UCLA
- ▶ RIPS Summer program at IPAM: last 3 years
- Numerous Short Courses and Invited Talks
- ▶ DDMA Speaker Series: Over 40 speakers in the first 1.5 years.
- ▶ (... and half the team is at universities!)

- Numerous Special Sessions: SIAM Imaging, SIAM Dynamical Systems, AMS meetings and AAAS Annual Meeting
- ▶ 2002 LANL Image Analysis Workshop
- 2005 Graduate Summer School at IPAM-UCLA
- RIPS Summer program at IPAM: last 3 years
- Numerous Short Courses and Invited Talks
- ▶ DDMA Speaker Series: Over 40 speakers in the first 1.5 years.
- ▶ (... and half the team is at universities!)

- Numerous Special Sessions: SIAM Imaging, SIAM Dynamical Systems, AMS meetings and AAAS Annual Meeting
- 2002 LANL Image Analysis Workshop
- 2005 Graduate Summer School at IPAM-UCLA
- RIPS Summer program at IPAM: last 3 years
- Numerous Short Courses and Invited Talks
- ▶ DDMA Speaker Series: Over 40 speakers in the first 1.5 years
- ▶ (... and half the team is at universities!)

- Numerous Special Sessions: SIAM Imaging, SIAM Dynamical Systems, AMS meetings and AAAS Annual Meeting
- ▶ 2002 LANL Image Analysis Workshop
- 2005 Graduate Summer School at IPAM-UCLA
- RIPS Summer program at IPAM: last 3 years
- Numerous Short Courses and Invited Talks
- ▶ DDMA Speaker Series: Over 40 speakers in the first 1.5 years
- ▶ (... and half the team is at universities!)

- Numerous Special Sessions: SIAM Imaging, SIAM Dynamical Systems, AMS meetings and AAAS Annual Meeting
- 2002 LANL Image Analysis Workshop
- 2005 Graduate Summer School at IPAM-UCLA
- RIPS Summer program at IPAM: last 3 years
- Numerous Short Courses and Invited Talks
- ▶ DDMA Speaker Series: Over 40 speakers in the first 1.5 years.
- ▶ (... and half the team is at universities!)

- Numerous Special Sessions: SIAM Imaging, SIAM Dynamical Systems, AMS meetings and AAAS Annual Meeting
- ▶ 2002 LANL Image Analysis Workshop
- 2005 Graduate Summer School at IPAM-UCLA
- RIPS Summer program at IPAM: last 3 years
- Numerous Short Courses and Invited Talks
- ▶ DDMA Speaker Series: Over 40 speakers in the first 1.5 years.
- (... and half the team is at universities!)

DDMA

- ► Current Postdocs: Dreisigmeyer, Rasmussen, Rodriguez
- Current Students: Campbell, Staneva, Powell
- ► So far, 6 postdocs and 14 students

DDMA

- Current Postdocs: Dreisigmeyer, Rasmussen, Rodriguez
- Current Students: Campbell, Staneva, Powell
- ► So far, 6 postdocs and 14 students

Students and Postdocs

DDMA

- Current Postdocs: Dreisigmeyer, Rasmussen, Rodriguez
- Current Students: Campbell, Staneva, Powell
- ► So far, 6 postdocs and 14 students

Students and Postdocs

DDMA

- Current Postdocs: Dreisigmeyer, Rasmussen, Rodriguez
- Current Students: Campbell, Staneva, Powell
- So far, 6 postdocs and 14 students

- ▶ We use workshops to develop programmatic deliverables very quickly: 3 day meetings, often 40 hours of work in those 3 days by on the order of 15 members.
- External members are key team members, not simply collaborators on papers. Students are often key contributers, projects are not simply invented and tailored to fit them.
- We convert all classified problems to unclassified analogs and move the problems to any appropriate member of the team, irrespective of clearance level.
- ► Each team member runs the gamut from intimate contact with raw data to very theoretical investigations.

- ▶ We use workshops to develop programmatic deliverables very quickly: 3 day meetings, often 40 hours of work in those 3 days by on the order of 15 members.
- External members are key team members, not simply collaborators on papers. Students are often key contributers, projects are not simply invented and tailored to fit them.
- We convert all classified problems to unclassified analogs and move the problems to any appropriate member of the team, irrespective of clearance level.
- ► Each team member runs the gamut from intimate contact with raw data to very theoretical investigations.

- ▶ We use workshops to develop programmatic deliverables very quickly: 3 day meetings, often 40 hours of work in those 3 days by on the order of 15 members.
- External members are key team members, not simply collaborators on papers. Students are often key contributers, projects are not simply invented and tailored to fit them.
- We convert all classified problems to unclassified analogs and move the problems to any appropriate member of the team, irrespective of clearance level.
- ► Each team member runs the gamut from intimate contact with raw data to very theoretical investigations.

- We use workshops to develop programmatic deliverables very quickly: 3 day meetings, often 40 hours of work in those 3 days by on the order of 15 members.
- External members are key team members, not simply collaborators on papers. Students are often key contributers, projects are not simply invented and tailored to fit them.
- We convert all classified problems to unclassified analogs and move the problems to any appropriate member of the team, irrespective of clearance level.
- ► Each team member runs the gamut from intimate contact with raw data to very theoretical investigations.

- ▶ IDA: an integrated algorithm environment for data analysis
- Sparse X-ray Inversions: Fast and Cheap (and in control)
- Non-convex Regularizations: More from Less
- Using Geometric Measure Theory: Properties of Exact Minimizers
- Metrics that ignore the unimportant: Null-Riemannian Geometry
- Image Warping: Monge-Kantorovich and others
- Random Shapes and Images: important for many reasons
- Object detection and recognition: not just faces

- ▶ IDA: an integrated algorithm environment for data analysis
- Sparse X-ray Inversions: Fast and Cheap (and in control)
- ▶ Non-convex Regularizations: More from Less
- Using Geometric Measure Theory: Properties of Exact Minimizers
- Metrics that ignore the unimportant: Null-Riemannian Geometry
- Image Warping: Monge-Kantorovich and others
- Random Shapes and Images: important for many reasons
- Object detection and recognition: not just faces

- ▶ IDA: an integrated algorithm environment for data analysis
- Sparse X-ray Inversions: Fast and Cheap (and in control)
- Non-convex Regularizations: More from Less
- Using Geometric Measure Theory: Properties of Exact Minimizers
- Metrics that ignore the unimportant: Null-Riemannian Geometry
- Image Warping: Monge-Kantorovich and others
- Random Shapes and Images: important for many reasons
- Object detection and recognition: not just faces

- ▶ IDA: an integrated algorithm environment for data analysis
- Sparse X-ray Inversions: Fast and Cheap (and in control)
- Non-convex Regularizations: More from Less
- Using Geometric Measure Theory: Properties of Exact Minimizers
- Metrics that ignore the unimportant: Null-Riemannian Geometry
- Image Warping: Monge-Kantorovich and others
- Random Shapes and Images: important for many reasons
- Object detection and recognition: not just faces

- ▶ IDA: an integrated algorithm environment for data analysis
- Sparse X-ray Inversions: Fast and Cheap (and in control)
- Non-convex Regularizations: More from Less
- Using Geometric Measure Theory: Properties of Exact Minimizers
- Metrics that ignore the unimportant: Null-Riemannian Geometry
- Image Warping: Monge-Kantorovich and others
- Random Shapes and Images: important for many reasons
- Object detection and recognition: not just faces

- ▶ IDA: an integrated algorithm environment for data analysis
- Sparse X-ray Inversions: Fast and Cheap (and in control)
- Non-convex Regularizations: More from Less
- Using Geometric Measure Theory: Properties of Exact Minimizers
- Metrics that ignore the unimportant: Null-Riemannian Geometry
- Image Warping: Monge-Kantorovich and others
- Random Shapes and Images: important for many reasons
- Object detection and recognition: not just faces

- ▶ IDA: an integrated algorithm environment for data analysis
- Sparse X-ray Inversions: Fast and Cheap (and in control)
- Non-convex Regularizations: More from Less
- Using Geometric Measure Theory: Properties of Exact Minimizers
- Metrics that ignore the unimportant: Null-Riemannian Geometry
- Image Warping: Monge-Kantorovich and others
- Random Shapes and Images: important for many reasons
- ▶ Object detection and recognition: not just faces

- ► IDA: an integrated algorithm environment for data analysis
- Sparse X-ray Inversions: Fast and Cheap (and in control)
- Non-convex Regularizations: More from Less
- Using Geometric Measure Theory: Properties of Exact Minimizers
- Metrics that ignore the unimportant: Null-Riemannian Geometry
- Image Warping: Monge-Kantorovich and others
- Random Shapes and Images: important for many reasons
- Object detection and recognition: not just faces

Classification Mod Invariance: Face Results

DDMA -

Early Project: Ignoring differences that don't matter

Factor out the unimportant

Tangent Approximations to Orbits

Results: CSU database (2003)

TVAbel: Inversions assuming symmetry

Another of the earliest DDMA projects:

$$\min_{u} F(u) = \int |\nabla u| dx + \lambda \int |Pu - d|^2 dx \tag{1}$$

where the P is the measurement operator (Abel projection).

IDA: The DDMA Image and Data Analyzer

IDA provides a single framework for executing complex analysis pipelines. It has advantages over plain Matlab:

- Consistent interface for all components, regardless of language.
- Automatic data management via an embedded SQL database.
- Basic visualization capabilities.
- A simple data flow language is provided.
- Built in "parameter study" capability.
- Abstraction of iteration allows for transparent parallel/distributed execution, data-reuse.

IDA makes analysis easier, and allows contributors to rapidly make their components available by conforming to our component standard.

Member Research: Examples

DDMA

In the next two slides I show a very short snapshot from a team member's research.

- Wotao Yin was selected because he responded quickly to a request for a synopsis.
- As mentioned above, this is a small slice of the full breadth and depth of the team.

You will hear four of us talk throughout the day about different aspects of our research.

DDMA Member Research: Wotao Yin (Rice)

- ► Convex optimization theory and applications, especially the applications of second-order cone programming and semi-definite programming in image processing, statistical learning, and computer vision.
- Extensions of some existing optimization algorithms to sovling problems constrained on smooth manifolds.
- Very recent work includes a fast algorithm for minimizing certain convex functions using the parametric maximum flow algorithm.

DDMA Member Research: Wotao Yin (Rice)

Using L1TV to remove lighting effects:

Faces under lighting.jpg

